您現在的位置: 首頁 » 師資隊伍 » 教研系列 » 按名字 » Z » 正文

師資隊伍

Z

仉尚航

職稱:助理教授

研究所:視頻與視覺技術研究所

研究領域:機器學習與計算機視覺,視覺信息處理與類腦智能

電子郵件:shanghangpku.edu.cn

主要研究方向

開放世界泛化機器學習、類腦視覺感知與學習、AI驅動科學計算

主要科研項目

1.自主意識學習,國家自然科學基金委員會專項項目

2.面向駕駛場景的高真實感數據合成與視覺模型訓練平台

3.面向自動駕駛的開放環境泛化機器學習, CCF-滴滴蓋亞青年學者科研基金項目

4.面向自動駕駛的跨場景泛化3D感知關鍵技術研究,CCF-百度松果基金項目

主要學術任職

·Senior Program Committee,AAAI Conference on Artificial Intelligence(AAAI), 2022 & 2023.

·Organizing Chair, Advances in Neural Information Processing Systems (NeurIPS) 2022,1st Human in the Loop Learning Workshop.

·Chief Organizer, International Conference on Machine Learning (ICML) 2021,Self-Supervised Learning for Reasoning and Perception.

·Chief Organizer, International Conference on Machine Learning (ICML) 2021,3rd Human in the Loop Learning Workshop.

·Guest Editor, Special Issue on Novel Technologies in Multimedia Big Data, Electronics (ISSN 2079-9292).

·Chief Organizer, Conference on Neural Information Processing Systems (NeurIPS) 2020,Self-Supervised Learning-Theory and Practice Workshop.

·Chief Organizer, International Conference on Machine Learning (ICML) 2020,2nd Human in the Loop Learning Workshop.

·Chief Organizer, International Conference on Machine Learning (ICML) 2019,1st Human in the Loop Learning Workshop.

·Chief Organizer, ACM International Conference on Multimedia Retrieval (ICMR) 2019, "MMAC: Multi-Modal Affective Computing of Large-Scale Multimedia Data" Special Session.

·Member, IEEE, IEEE Women in Engineering, IEEE Computer Society, IEEE Signal Processing Society.

·Member, Association for Computing Machinery (ACM), ACM-SIGMM, ACM-SIGAI.

·Reviewer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), IEEE Transactions on Neural Networks and Learning Systems (TNNLS), International Journal of Computer Vision (IJCV), IEEE Signal Processing Magazine (SPM), Transactions on Image Processing (TIP), IEEE Transactions on Multimedia (TMM), IEEE Signal Processing Letters (SPL), The ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM).

·Reviewer/Program Committee, NeurIPS; ICLR; CVPR; ICCV; ECML; AAAI; IJCAI.



Selected Publications

[1]Zhou, H.,Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021, February). Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of AAAI.AAAI Outstanding Paper Award.

[2]Zhang, S., Wu, G., Costeira, J. P., & Moura, J. M. (2017). Understanding traffic density from large-scale web camera data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5898-5907).

[3]Zhang, S.,Wu, G., Costeira, J. P., & Moura, J. M. (2017). Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city cameras. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 3667-3676).

[4]Zhang, S., Shen, X., Lin, Z., Měch, R., Costeira, J. P., & Moura, J. M. (2018). Learning to understand image blur. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 6586-6595).

[5]Zhao, H.,Zhang, S., Wu, G., Moura, J. M., Costeira, J. P., & Gordon, G. J. (2018). Adversarial multiple source domain adaptation. Advances in neural information processing systems (NeurIPS), 31.

[6]J. Ni,S. Zhang, H, Xie, “Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning”,Advances in Neural Information Processing Systems(NeurIPS),2019.

[7]X. Ma, X. Kong,S. Zhang, E. Hovy, “MaCow: Masked Convolutional Generative Flow”,Advances in Neural Information Processing Systems(NeurIPS),2019.

[8]Zhao, S.#, Wang, G.#,Zhang, S.#, Gu, Y., Li, Y., Song, Z., ... & Keutzer, K. (2020, April). Multi-source distilling domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (Vol. 34, No. 07, pp. 12975-12983).

[9]Zhao, S., Yue, X.,Zhang, S., Li, B., Zhao, H., Wu, B., ... & Keutzer, K. (2020). A review of single-source deep unsupervised visual domain adaptation.IEEE Transactions on Neural Networks and Learning Systems (TNNLS,IF 14.255).

[10]Dong, H., Dong, H., Ding, Z., Zhang, S., & Chang. (2020). Deep Reinforcement Learning. Springer Singapore.

[11]X. Sun, Y. Xu, P. Cao, Y. Kong*, L. Hu,S. Zhang*, Y.Wang, “TCGM: An Information-Theoretic Framework for Semi-Supervised Multi-Modality Learning”,European Conference on Computer Vision (ECCV) 2020,Oral presentation.

[12]K. Mei, C. Zhu, J. Zou,S. Zhang, “Instance Adaptive Self-Training for Unsupervised Domain Adaptation”, 16th European Conference on Computer Vision(ECCV), 2020.

[13]Li, B.#, Wang, Y.#,Zhang, S.#, Li, D., Keutzer, K., Darrell, T., & Zhao, H. (2021). Learning invariant representations and risks for semi-supervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1104-1113).

[14]S. Zhou,S. Zhang, et al. “Caching in Dynamic Environments: a Near-optimal Online Learning Approach”, IEEE Transactions on Multimedia (TMM, IF 8.182), 2021.

[15]H. Zhou, J. Li, J. Peng, S. Zhang,S. Zhang,“Triplet Attention: Rethinking the similarity in Transformers”,ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD), 2021.

[16]X Ma, X Kong,S Zhang, E Hovy, “Decoupling Global and Local Representations via Invertible Generative Flows”, Accepted byInternational Conference on Learning Representations(ICLR), 2021.

[17]T. Li, X. Chen,S. Zhang*, Z. Dong*, K. Keutzer, “Cross-Domain Sentiment Classification With Contrastive Learning and Mutual Information Maximization”,IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2021.

[18]C. Zhang#, M. Zhang#,S. Zhang#, et al. "Delving deep into the generalization of vision transformers under distribution shifts.", Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[19]M. Liu, Q. Zhou, H. Zhao, L. Du, Y. Du, J. Li, K. Keutzer, S. Zhang*. Prototypical Supervised Contrastive Learning for LiDAR Point Cloud Panoptic Segmentation, International Conference on Robotics and Automation (ICRA), 2022.

[20]S. Zhou, H. Zhao,S. Zhang*, et al. “Online Continual Adaptation with Active Self-Training”, Artificial Intelligence and Statistics Conference (AISTATS), 2022.

[21]S. Zhou,S. Zhang*, et al. “Active Gradual Domain Adaptation: Dataset and Approach”, IEEE Transactions on Multimedia (TMM, IF 8.182), 2022.

[22]J. Yu, J. Liu, X.Wei, H. Zhou, Y. Nakata, D. Gudovskiy, T. Okuno, J. Li, K. Keutzer,S. Zhang*, MTTrans: Cross-Domain Object Detection with Mean Teacher Transformer, 17th European Conference on Computer Vision (ECCV) 2022.

[23]X. Li, J. Liu, S.Wang, C. Lyu, M. Lu, Y. Chen, A. Yao, Y. Guo,S. Zhang*, Efficient Meta-Tuning for Content-aware Neural Video Delivery, 17th European Conference on Computer Vision (ECCV) 2022.

[24]Chu, X., Jin, Y., Zhu, W., Wang, Y., Wang, X., Zhang, S. and Mei, H., 2022, June. DNA: Domain Generalization with Diversified Neural Averaging. In International Conference on Machine Learning (pp. 4010-4034) (ICML). PMLR.

[25]Y Zou,S Zhang, Y Li, R Li, Margin-Based Few-Shot Class-Incremental Learning with Class-Level Overfitting Mitigation, Neural Information Processing Systems (NeurIPS) 2022.

[26]H Zhou, S Xiao,S Zhang, J Peng, S Zhang, J Li, Jump Self-attention: Capturing High-order Statistics in Transformers, Neural Information Processing Systems (NeurIPS) 2022.