個人主頁: https://wuyinjun-1993.github.io/
主要研究方向
機器學習中的數據管理問題,人工智能與數據庫系統的融合,人工智能中的可解釋性問題
博士研究論文“Towards the Efficient Use of Fine-Grained Provenance in Data Science Applications”獲得賓夕法尼亞大學計算機系最佳博士論文獎。
在國際計算機會議和期刊上發表20餘篇論文,包括:
數據庫頂級會議SIGMOD (CCF-A, 2篇),VLDB (CCF-A, 3篇),系統頂級會議OOPSLA(CCF-A,1篇),人工智能頂級會議ICML(CCF-A, 2篇),AAAI(CCF-A,2篇)
主要學術任職
在多個CCF-A類期刊和會議上擔任審稿人,包括:
ACM SIGMOD (CCF-A)
VLDB Journal (CCF-A)
ICDE (CCF-A)
Neurips (CCF-A)
AAAI (CCF-A)
EDBT (CCF-B)
Selected Publications
TorchQL: A Programming Framework for Integrity Constraints in Machine Learning (OOPSLA 2024)
Do Machine Learning Models Learn Statistical Rules Inferred from Data? (ICML 2023)
Learning to Select Pivotal samples for Meta Re-weighting (AAAI 2023)
Chef: a cheap and fast pipeline for iteratively cleaning label uncertainties (VLDB 2021)
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series (AAAI 2021)
Deltagrad: Rapid retraining of machine learning models (ICML 2020)
PrIU: A provenance-based approach for incrementally updating regression models (SIGMOD 2020)
ProvCite: A Provenance-based Citation System (VLDB 2019)
Data Citation: Giving Credit where Credit is Due (SIGMOD 2018)
Automating data citation in CiteDB (VLDB 2017)