主要研究方向
王若松的主要研究領域是機器學習理論,包括對強化學習和深度學習理論基礎的研究。他目前的主要研究方向為:(1)設計有理論保證的強化學習算法,(2)證明強化學習問題的采樣複雜度下界,(3)在理論研究的基礎上,設計更高效、更魯棒的強化學習系統和更合理的強化學習算法評估框架。
Selected Publications
R. Wang, D. P. Foster, and S. M. Kakade. What are the statistical limits of offline RL with linear function approximation? In ICLR, 2021.
R. Wang, R. Salakhutdinov, and L. F. Yang. Reinforcement learning with general value function approximation: Provably efficient approach via bounded eluder dimension. In NeurIPS, 2020.
R. Wang, S. S. Du, L. F. Yang, and S. M. Kakade. Is long horizon RL more difficult than short horizon RL? In NeurIPS, 2020.
S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an infinitely wide neural net. In NeurIPS, 2019.